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Speciation and extinction in a simple model of evolution

D. A. Head* and G. J. Rodgers†

Department of Physics, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
~Received 6 November 1996!

We introduce a simple model of macro-coevolution that allows the branching and termination of species
lines and also incorporates external influences to the ecosystem. The strength of the external influences and the
likelihood of speciation and extinction are defined from the fitness landscapes by two parameters,dg and
ds. Results from numerical simulations show that the total number of species fluctuates about a natural system
sizeN` . We present a mean-field theory that predictsN`}(K21)ds/dg2, whereK21 is the system connec-
tivity and ds is small. This result compares well with the numerical simulations. For largeds, we demonstrate
why this expression changes toN`}(K21)ds2/dg2. We compare the model to the fossil record, and comment
on the role of ecological niches in models of evolution.@S1063-651X~97!15403-4#

PACS number~s!: 87.10.1e, 05.40.1j
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I. INTRODUCTION

Attempts to model the evolution of the Earth’s ecosyst
have been hampered by its sheer size and complexity. E
analysis of even small subsystems is often impractical,
tractable models of the large-scale dynamics can only
constructed after considerable simplifications have b
made. To this end, Bak and Sneppen@1# have introduced a
model that captures the essential ingredients of a coevol
system without trying to account for the complex intern
dynamics of each species. Each species is represented
single number, which is related to the average time it take
evolve to a new form. This simplification allowed extensi
numerical and analytical studies to be performed, wh
nonetheless revealed similarities with the fossil record, m
notably the existence of punctuated equilibria and a pow
law distribution of extinction sizes.

In the original Bak-Sneppen model, extinction is mode
by a species changing form in response to the change in f
of an interacting species. This is a rather narrow definiti
so recently a variety of models have been introduced
incorporate more sophisticated mechanisms for extinct
One approach@2# has been to account for influences exter
to the ecosystem, such as meteor impacts, volcano erupt
etc., by assigning a fitness value to each species. In add
to the usual dynamics, all species with a fitness less t
some global random noise value are also made extinc
number of models have allowed for the permanent term
tion of species lines, caused either by the population red
ing to zero@3#, viability dropping below a threshold valu
@4#, or competition from similar species in neighboring r
gions@5#. Generally, these models exhibit features that ag
with observed paleobiological findings.

All these models@1–5# have tightly controlled the tota
number of species in the system, usually having a fixed s
tem size where every species made extinct is immedia
replaced by a new one. This has been justified by the con
of ecological niches, where it is assumed there are a const
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number of niches in the system, each of which contains
actly one species. This is in direct contradiction to the fos
record@6#, which clearly shows a wide variation in lifeform
diversity, including periods of both apparent stasis and ra
growth. One previous attempt to tackle this problem allow
each species the possibility of speciation~splitting into two
subspecies! or extinction whenever it evolved to a new form
@7#. Depending upon how this probability is defined, t
number of species either tends to zero or increases with
limit as the system evolves.

In this paper, we present a modified Bak-Sneppen mo
in which speciation and extinction are defined purely fro
the internal dynamics of each species. The system evolve
a state in which the total number of species fluctuates aro
a steady state value. We refer to this value as thenatural
system size, because there is nothing that directly controls
value or even its existence~for instance, there is no referenc
to niches!. The model is defined and justified in Sec. II.
Sec. III, results obtained from numerical simulations a
compared to the fossil record. A mean-field theory for t
model has been derived that predicts how the natural sys
size depends upon the system parameters, where ther
now three such parameters. This analysis is explained in
and compared to numerical results in Sec. IV. The main
sults are summarized and some possible extensions to
model are suggested in Sec. V.

II. DEFINITION OF THE MODEL

A key component of Darwinian evolution is that varia
tions in an organism’s form~that is, itsphenotype! can alter
the probability of that organism’s survival, which, whe
combined with a suitable hereditary mechanism, gives ris
natural selection. Rather than try to reduce the evolution o
species to its component individuals or genes, howe
models based on the Bak-Sneppen approach take the w
species as the fundamental unit of selection. The relation
between phenotype and survival probability is quantified
a rugged fitness landscape@8#, which is a function of the
species itself, the species directly connected to it in the fo
chain, and also of environmental factors. A schematic
ample is given in Fig. 1, where for simplicity we have com
3312 © 1997 The American Physical Society
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55 3313SPECIATION AND EXTINCTION IN A SIMPLE MODEL . . .
pressed all possible phenotypic variations onto the sin
horizontal axis. The vertical axis corresponds to some m
sure of the species survival, which could be any one o
number of definitions for biological fitness@9#. Local
maxima are the attractors of these landscapes, in much
same way that local minima are the attractors of poten
energy landscapes. A species passes between adj
maxima with a probability exponentially small in, and hen
on a time scale exponentially large in, the barrier heig
Previous models have considered only the smallest ba
against mutation, citing the exponential time differences
justification for rejecting the larger ones. Since we eventua
wish to include branching into two different species, we
ject all but the two smallest barriers,b1 andb2.

Our model is defined as follows. The system consists
N species, each of which is completely defined by two r
numbers,$b1i ,b2i%, i51, . . . ,N, corresponding in no par
ticular order to the two smallest barriers against mutati
Initially each barrier is uniformly distributed on the interv
@0,1#. At every time step, the lowest of the 2N barriers is
found. This is thebki that obeysbki,bmn for all mÞk and
nÞ i , wherek51 or 2. The speciesi is thenmutated— that
is, bothb1i and b2i are assigned new values from the un
form distribution, corresponding to a new fitness landsca
Note that both barriers are changed irrespective of the v
of k. To incorporate coevolution, those species linked toi in
a manner yet to be defined are similarly mutated.

As the model has been defined so far, the barriers
static between mutations and so the larger barrier for e
species is not involved in the dynamics. Therefore if we w
to remove the larger of the two barriers upon every mutati
we would have the same system with the same dynamics
now with just one barrier per species. This process of cho
ing the smallest of two uniformly distributed barriers can
mimicked by drawing a single barrier from the different d
tribution P(x)52(12x), xP@0,1#. Thus we can map the
two-barrier model onto the original Bak-Sneppen model w
barriers drawn from a modified probability distribution. Th
change is unimportant since the model is robust — that is
essential behavior is insensitive to arbitrary details such
the particular choice of probability distribution. With the in
clusion of speciation and extinction, however, both barri

FIG. 1. A schematic diagram of a fitness landscape. Lo
maxima correspond to stable phenotypes. The two smallest bar
against mutation are given byb1 andb2.
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become dynamically involved and so this mapping is
longer valid.

Before coming to these new features, it should be no
that the fitness landscape is also dependent on events
lated to other species, including geographical, climatic, a
astronomical changes. The influence of these factors on e
species’ fitness landscape, and hence their barriers, is li
to be very complex. We assume that their total effect is r
dom and incorporate this into the model as noise
O(dg), wheredg is a new parameter. Specifically, we sa
that at every time step, each barrier in the system is tra
formed according to

bki→bki1dgki , i51, . . . ,N, k51 or 2 ~1!

where the dgki(t) are uniformly distributed on
@2dg/2,dg/2# and uncorrelated in time. We shall call th
dg noise.

We now consider extinction. Although a species that u
dergoes a burst of mutations may appear in the fossil rec
as a separate extinction and speciation, we prefer to thin
this as a psuedoextinction and reserve the term extinction
the permanent termination of a species line. There are m
possible mechanisms for extinction given in the literatu
@10,11#. Within the context of this model, we define extin
tion to be the inability for a species to adapt to new con
tions or competitors. In terms of the barriers, a species
comes extinct if, when it is chosen for mutation, it has bo
b1i.1 andb2i.1. The justification for this is that a specie
with only very large barriers against mutation has become
inflexible that it is no longer able to adapt and dies o
Fixing the threshold value to be 1 may seem to be somew
arbitrary, but the fitness scale is entirely arbitrary anyw
and fixing the value like this removes the need for ex
parameters. The model has proved to be robust under a
riety of extinction thresholds, including ones defined
probability distributions. The value of 1 was chosen so t
there would be no extinction whendg50 and the original
model might be recovered. Since extinction and specia
are to be treated independently, the vacancy left by an ext
species is not immediately refilled and the system size
reduced by 1,N→N21.

Speciation occurs when two subpopulations reach a s
of reproductive isolation and hence should be considere
separate subspecies. This could occur, for instance, by sp
isolation, such as the introduction of a geographical barr
or by some form of genetic variation resulting in a hybr
zone with low fitness. In fact, the possible causes of spe
tion @12# are too numerous to account for independen
Within the framework of the fitness landscapes, howev
there is a way of defining speciation that neatly encapsul
many of the possible biological mechanisms. LetP1 denote
the probability of speciesi to cross over the barrierb1i , and
P2 the probability to cross overb2i . Then P1 /P2 decays
exponentially in (b1i2b2i) and is, respectively, 0 or̀ for
b1i significantly larger or smaller thanb2i . However, for
b1i'b2i there is a finite probability of subpopulations cros
ing over different barriers. For simplicity, we say that spec
i will speciate if, when chosen for mutation, it ha
ub1i2b2i u smaller than some new parameterds. For further
realism, we could incorporate the possibility of one spec

l
rs
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3314 55D. A. HEAD AND G. J. RODGERS
splitting into three or more subspecies simultaneously,
including further barriersb3i , b4i , and so on. This would
occur so rarely as to barely contribute to the dynamics, h
ever.

To complete the description of this model, we must defi
the system connectivity. Difficulties are immediately app
ent in any lattice based approach. For instance, branc
would not be possible for any species that has all its adja
lattice sites occupied. Also, the extinction of a single spec
in a one-dimensional food chain would split the chain in
two. An alternative approach, which has already been s
ied with simpler definitions for extinction and speciation@7#,
is to arrange all species past and present on a tree, with
ends of the branches corresponding to those currently ac
In this paper, however, we have chosen to simplify the
namics by assigning to every speciesK21 neighbors, se-
lected at random from the remainingN21 in the system
@13#. These neighbors are reselected upon every muta
hence the disorder is annealed. Since the system has no
tial definition it cannot be regarded as self-organized criti
@14#.

In summary, this model is defined as follows. The syst
consists ofN species, each of which has two barriers,b1i and
b2i , i51, . . . ,N. All barriers are initially drawn from the
uniform probability distribution on the interval@0,1#. The
algorithm for every time step then proceeds as follows.~i!
The smallest barrier in the system,bki , is found, where
k51 or 2. Speciesi is then mutated, which means that bo
b1i andb2i are given new random values from the unifor
probability distribution.~ii ! K21 other species are chosen
random and similarly mutated.~iii ! If a species selected fo
mutation hasb1i.1 andb2i.1, it is removed from the sys
tem. N→N21. ~iv! If a species selected for mutation h
ub1i2b2i u,ds but is not made extinct, it branches into tw
new species with random barriers.N→N11. ~v! Every bar-
rier bki is transformed tobki1dgki , where thedgki are uni-
formly distributed on@2dg/2,dg/2# and are reselected a
every time step. The order of steps~iii ! and ~iv! can be re-
versed if eitherdg or ds is small. This robustness is los
when both parameters are large, when reversing the o
will result in almost no extinction.

The original Bak-Sneppen model is recovered in the lim
dg→0 andds→0, with one crucial difference. In@1,2# the
time step is set atdt;exp(bki /b0), since this is the expecte
time it takes to pass over the minimum barrierbki , where
b0 fixes the scale. Our model, however, also includesdg
noise corresponding to influences unrelated to the barr
and consequently on an independent time scale. Rather
include two separate time scales for the coevolutionary
external processes, we have chosen to ignore such cons
ations and simply setdt to be constant. The physical ram
fications of this choice will be discussed when the mode
compared to the fossil data in Sec. III.

With such specific definitions of general processes, i
obviously important to check for robustness. We have tr
various definitions for speciation and extinction based
uniform, exponential, and normal distributions, and simila
for the distribution of thedg noise. In all these cases, th
essential behavior of the system remained unchanged
only differences being purely quantitative.
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III. NUMERICAL RESULTS AND COMPARISON
TO THE FOSSIL RECORD

When dg50 there is no extinction and the system si
N(t) increases without limit. This is also the case wh
K51. Whends50 speciation becomes impossible andN
tends to zero. Withdg.0, ds.0, andK.1, N approaches
a constant valueN` , which is independent of the initia
value N0. It then fluctuates around this value but nev
settles down within the time frame considered, typically
to around 1043N` time steps. An example is given in Fig. 2
For values ofN0 far from N` , N(t) initially increases or
decreases linearly. Note that we have implicitly assumed
dg andds are small, since large values are physically un
alistic.

That such a natural system size should exist at all is by
means obvious, since speciation and extinction are both
fined independently ofN. It exists because thedg noise has
a different effect on speciation than it does on extinctio
The random noise is just as likely to push two barriers ap
as to bring them together, so the rate of speciation rem
roughly unchanged. However, the noise acts asymmetric
on barriers near the threshold for extinction, tending to pu
species over this threshold into the small tail correspond
to those species that will be made extinct when next muta
The important point to remember is that thedg noise acts on
all N species at every time step, hence the rate of extinc
increases withN but the rate of speciation will remain con
stant. A steady state will be found when these two ra
balance. This qualitative reasoning is confirmed by
mean-field analysis in Sec. IV.

For marine organisms, a graph of the number of famil
of species against time@6# initially increases, then levels ou
throughout much of the Palaeozoic era. After a sudden d
caused by the mass extinction at the end of the Perm
period, the graph increases linearly beyond the previous

FIG. 2. Plot of the system sizeN(t) against t, with K54,
dg50.02, andds50.001, starting from a system withN05200
species.
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55 3315SPECIATION AND EXTINCTION IN A SIMPLE MODEL . . .
teau and is still increasing to the present day. We presen
following possible explanation for this behavior based on
model. The marine record could be viewed as being split i
two parts separated by the end-Permian mass extinc
where the more recent part has a much higher value
N` . This would certainly account for the shape of the fos
record, but we still need to justify the different values f
N` . This comes from closer examination of the mass exti
tion itself @15#, which caused the predominantly sedenta
marine life to quickly evolve to much more mobile form
Increased mobility would mean a lessened susceptibility
geographic fluctuations, hencedg would decrease and s
N` would indeed increase~see Sec. IV!.

The data for continental organisms does not agree as w
In this case, the plot of diversity shows an increase fa
than linear and no apparent plateaus. The model we h
presented clearly fails to account for this behavior and
can only suppose that more realistic enhancements may
prove its validity. One such modification would be to allo
the tendency to branch or become extinct to itself be a
reditary characteristic, that is to replace the global para
etersds anddg with species-dependentdgi anddsi . Simu-
lations allowing such quantities to vary randomly by a sm
amount upon mutation do indeed appear to remove
steady state and haveN increase faster than linearly. This
to be expected, since branching now favors species wi
larger dsi . It would be interesting to see what a detail
study of such a model might reveal.

The rate of mutation isKdt, which is constant. This is no
true for most other Bak-Sneppen models, wheredt is a func-
tion of the minimum barrier as explained in Sec. II. It w
this variation that allowed for the power-law distribution
extinction sizes, which was one of the central results of
original study. We cannot hope to reproduce such beha
without first separating the time scales for mutation anddg
noise, something that would require the introduction of
least one extra parameter. The extinction of species line
our model follows a Poisson distribution, as expected fo
random selection process.

IV. MEAN-FIELD ANALYSIS

In this section we extend the mean-field analysis
Flyvbjerg et al. @16# to our model. Although a full solution
was not obtained, unsurprising in light of the dynamic
complexity, we have derived an expression for the dep
dence ofN` on the parametersK, ds, anddg, which agrees
with the numerical results. Initially, however, we ignore e
tinction and speciation and just consider how the analy
can be expanded to cope with pairs of barriers.

We definep(x,y)dxdy to be the probability that a ran
domly selected speciesi has x,b1i,x1dx and
y,b2i,y1dy. This can be related topmin(x,y), the distri-
bution for whenx or y is the lowest barrier in the system, b

pmin~x,y!5Np~x,y!QN21~x,y!, ~2!

whereQ(x,y) is the probability that a species has both b
riers greater than the smaller ofx andy,
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Q~x,y!5E
m

1E
m

1

p~x8,y8!dx8dy8, ~3!

wherem5 min(x,y). The justification of Eq.~2! is that the
species with the minimum barrier could be any one ofN in
the system, and the otherN21 species must have both ba
riers larger than the minimum. Note thatp(x,y)5p(y,x)
and the time dependence is implicit. At each time st
p(x,y) will change by an amountDp(x,y) defined by

Dp~x,y!52
1

N
pmin~x,y!

2
K21

N21 S p~x,y!2
1

N
pmin~x,y! D1

K

N
, ~4!

where the first term on the right-hand side accounts for
mutation of the species with the lowest barrier, the seco
for the the mutation of theK21 random nearest neighbor
and the third term handles theK new pairs of barriers.

The system evolves to a state whereDp50. Using Eqs.
~2! and ~4! we derive the steady state equation

K

N
2
K21

N21
p2

N2K

N21
pQN2150. ~5!

As in the original model@1#, we must consider two separa
regimes. ForQ,12O(1/N), the third term on the left hand
side of Eq.~5! vanishes in the large-N limit and we get

p~x,y!5
K

K21
. ~6!

The other regime corresponds toQ(x,y)511O(1/N) and
hence, from the definition ofQ(x,y) Eq. ~3!, we can see tha
p(x,y)5O(1/N). This means the second term in Eq.~5! will
vanish, giving

pQN215
K

N
, ~7!

and hence from Eq.~2!

pmin5K. ~8!

The boundary between these two regimes can be foun
remembering that bothp and pmin are probability distribu-
tions and so must normalize to one. The final solution
therefore

p~x,y!5H K

K21
for x andy.12AK21

K

O~1/N! otherwise,

~9!

pmin~x,y!5H O~1/N! for x andy.12AK21

K

K otherwise.
~10!

The regime for large barriers corresponds to species that
only get mutated by selection as a random neighbor, whe
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3316 55D. A. HEAD AND G. J. RODGERS
the asymptotic tail for small barriers describes the fin
number of species that can be selected as having the m
mum barrier. These two regimes are separated by the thr
old value of 12A(K21)/K, which for largeK is approxi-
mately 1/2K. This comes as no surprise, since splitting
each pair of barriers would give the original single-barr
model with 2K21 random nearest neighbors, which also h
a threshold value of 1/2K. Breaking up pairs in this way
involves replacing just one fixed connection with a rand
one, a small difference whenK is large.

We now turn to considerdg.0 andds.0. To replace
the constantN with a dynamical variableN(t) will quickly
make analysis impractical, so instead we fixN5N` and as-
sume that speciation balances extinction. Our hope is tha
fluctuations ofN aroundN` do not significantly contribute to
the solution and can to a good approximation be ignor
Note that extinction has now become dynamically redund
since making a species extinct and immediately replacin
is no different from a normal mutation. The effects of sp
ciation can similarly be ignored, and we need only acco
for the dg noise.

With dg.0, p(x,y) will become blurred at the edges an
have a tail extending into the regionsx.1 and y.1. A
schematic diagram of the new solution is given in Fig.
Since thedg noise is independent of the mutation proce
we can calculate its contribution toDp(x,y) separately and
simply add it to the expression forDp(x,y) whendg50 ~4!.
The new steady-state equation is

K

N
u~x!u~12x!u~y!u~12y!2

K21

N21
p2

N2K

N21
pQN21

1
dg2

24
¹2p50, ~11!

where u~x!5H 1 if x>0,

0 otherwise.
~12!

FIG. 3. Schematic of solution ofp(x,y) for dg.0. The shaded
region is the density ofp(x,y), lighter gradations corresponding t
lower densities.pE refers to the regionx.1 andy.1, where spe-
cies are liable to extinction.
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Theu functions in the first term are needed sincex andy can
now take values outside@0,1#. The last term on the left-hand
side of Eq. ~11! accounts for the noise, where,2 is the
Laplacian operator. A full derivation of this term is given
the Appendix. Note that it is only valid for whendg is small.
The system behavior for largedg is considered at the end o
this section.

Each of theK21 random neighbors selected every tim
step will be made extinct if they havex.1 andy.1. Thus
the rate of extinctionkE is given by

kE5~K21!E
1

`E
1

`

p~x,y!dxdy. ~13!

Strictly speaking, the distribution in this equation should
p2(1/N)pmin , but this distinction can be ignored for larg
N. Since both barriers are large,QN21;0 and Eq.~11! can
now be simplified by the transformation

x→x85a~12x!, ~14!

y→y85a~12y!, ~15!

p→p85
K21

K
p, ~16!

a25
48~K21!

dg2N
, ~17!

to give

2¹82p8~x8,y8!5p8~x8,y8!2u~x8!u~y8!. ~18!

For eitherx8 or y8 negative, corresponding tox.1 or
y.1, the second term on the right-hand side of Eq.~18!
vanishes and the equation can be solved by separatio
variables. Coupled with the boundary conditio
p8(x8,y8)→0 for x8→2` or y8→2`, the solution is

p8~x8,y8!5ce~1/2!~x81y8!, ~19!

wherec is an arbitrary constant. However, it is clear from t
numerical results that although the assumption of separ
variables is good for this regime, it is not valid whe
x8.0 andy8.0. Without matching solutions for these tw
different regimes, it is impossible to fix the value ofc. That
c is independent ofK and a follows from the absence o
these parameters in Eq.~18!. Therefore transforming back
into the original variables gives the explicit parameter dep
dence,

p~x,y!5c
K

K21
e2~a/2!~x1y22! for x.1 andy.1.

~20!

Substituting this into Eq.~13! gives

kE}dg2N
K

K21
. ~21!

WhenN5N` this will be balanced by the rate of speci
tion, kS . The lack of a solution of Eq.~11! for x,1 and
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55 3317SPECIATION AND EXTINCTION IN A SIMPLE MODEL . . .
y,1 means we have been unable to derive an explicit
pression for speciation whendg.0. Instead, we use th
dg50 solution as a first approximation.kS will be propor-
tional to the density of species withux2yu,ds. Further-
more, since the species with the minimum barrier can a
branch, we must calculate the contributions fromp and
pmin separately and weight them accordingly, i.e.,

kS5E E u~ds2ux2yu!$pmin~x,y!1~K21!p~x,y!%dxdy.

~22!

Substituting the explicit expressions forp andpmin from Eqs.
~9! and ~10! gives

kS'2Kds for smallds, ~23!

which is explicitly independent ofN. With dg.0, p(x,y)
broadens and so the real rate of speciation will be sligh
lower.

SettingkE5kS gives an expression for the parameter d
pendence ofN` ,

N`}
ds

dg2
~K21!. ~24!

If Eq. ~24! were exact the quantityN`dg2/@ds(K21)#
would be invariant. This should be compared to the num
cal results given in Table I. The agreement with the me
field theory is very good for varyingdg andK, but there is a
noticeable divergence asds increases, corresponding to th
approximate derivation ofkS @Eq. ~23!#.

Although large values ofdg andds are physically unre-
alistic, to complete our study of this model we now descr
its behavior for large parameter values. For largedg and
small ds, N` is so low that statistical fluctuations make e
ery species in the system extinct. For smalldg and large
ds, the system size becomes very large and the average
between mutations increases accordingly. Hence the n
becomes the dominant driving force and the barrier distri
tion becomes very broad. Similarly, when bothdg and ds
are large the random noise dominates the system, so l
ds corresponds with a noise-dominated regime. The der

TABLE I. Observed values of the natural system sizeN` for
varying parameter values, averaged over 107 time steps. The num-
bers in brackets refer to the uncertainty in the last digit~s!. Note that
the line forK54, dg50.02, andds50.001 appears three times,
allow for easier comparison.

K dg ds ObservedN` N`dg2/@ds(K21)#

2 0.02 0.001 320~5! 128~2!

4 0.02 0.001 955~5! 127~1!

8 0.02 0.001 2236~10! 128~1!

4 0.02 0.001 955~5! 127~1!

4 0.04 0.001 241~2! 128~1!

4 0.08 0.001 61~1! 130~2!

4 0.02 0.001 955~5! 127~1!

4 0.02 0.002 1770~20! 118~2!

4 0.02 0.004 3250~50! 109~2!
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tion of the noise term in Eq.~11! is no longer valid and the
rates of speciation and extinction must be found by alter
tive methods.

In the noise-dominated regimep(x,y) is roughly symmet-
ric about thex andy axes, since the noise is isotropic. Th
at most 1 in 4 species has both barriers greater than 1,
the rate of extinction will approach an upper bound value

kE'
K21

4
. ~25!

The width ofp(x,y) can be found by the following argumen
based on a random walk approach. The average time
tween mutations as a random nearest neighbor
t5(N21)/(K21). Each barrier is a one-dimensional ra
dom walker that starts from near the origin and moves u
it is chosen for mutation, when it is sent back to ne
the origin. The average step size isdg/4, and so the
average distance it covers in this time is; 1

4dgt1/2

'1
4dgAN/(K21) for largeN. This gives the width of the

barrier distribution in both thex andy directions. The num-
ber of species in the infinite stripux2yu,ds is inversely
proportional to the distribution width, and so the rate of sp
ciation is now given by

kS}
Kds

dg
AK21

N
. ~26!

As N increases, the rate of extinction will remain rough
constant but now the rate of speciation will decrease unt
balance is found atN5N` . From Eqs.~25! and~26!, we find
that

N`}~K21!S ds

dgD
2

. ~27!

This expression replaces Eq.~24! whends is large. It differs
only in that it is now proportional tods2 rather than just
ds. Figure 4 demonstrates the crossover between the
different forms ofN` , where to keep the system sizes ma
ageable we have fixeddg5ds5d. It is clear from this plot
that N`}d21 for small d, but N`}d0 for large d, as Eqs.
~24! and ~27! predict. We have also checked the validity
Eq. ~27! for a range ofK, dg anddsÞdg.

V. DISCUSSION

In this paper, we have shown how the Bak-Snepp
model can be extended to include the branching and te
nation of species lines in a model that exhibits a natu
system size. Thus there is no longer any need to assum
constant number of ecological niches to obtain sensible
sults, i.e., systems whose species number does not diver
infinity or dwindle to zero. Indeed, rather than requirin
niches, this model can be used to define what we mean
niche and their number. Since we have a steady state, e
extinction must be associated with exactly one speciat
although they can be in any order and have any time se
ration. In this sense, we can say that every species doe
deed occupy a niche, but the number of niches now com
from within the system itself. This is an interesting corollar
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which should not be all that surprising, since any form
definition of an ecological niche would primarily involve a
the species and hence depend on the whole ecosystem.

Despite the extra features, this model is qualitatively v
similar to the original whendg and ds are small. This is
confirmed by the mean-field analysis, which shows that
barrier distribution has only changed byO(dg2). This analy-
sis has also produced an expression for the natural sy
size for whends is small. Although it has no physical mean
ing, we have also demonstrated the existence of a no
dominated regime, which occurs whends is large and has a
modified expression for the natural system size. It is inter
ing that in both cases the system size is proportional to
connectivityK21. This occurs because, whends is small,
the rate of extinction depends on the noise but the rate
speciation does not. Conversely, whends is large, it is the
rate of extinction that is constant and now the rate of spe
tion decreases due to the noise. The amount of noise
each barrier is subjected to depends upon the average
ber of time steps since its last mutation, which in this rand
nearest neighbor model is;N/(K21). Thus, the two rates
balance whenN}K21.

FIG. 4. Plot of the natural system sizeN` againstd5dg5ds.
K52 and the system size was averaged over 106 time steps. The
straight lines are to guide the eye, where the solid line is horizo
and the dashed line has a slope of21.
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Comparison to the fossil record has demonstrated so
agreement with the model, but also some qualitative diff
ences. Although the model is already fairly complex, the
are still many possible modifications that may improve
applicability. We have already mentioned introducin
species-dependentdsi anddgi . Another enhancement woul
be to have some form of locally defined connectivity,
replace the random neighbor approach used here. Fin
having a barrier-dependent time scale separate from
random noise would allow for comparison with the distrib
tion of extinction sizes from the fossil record. Many oth
variations could also be considered, but it seems likely t
the study of such models would be confined to numeri
work.

APPENDIX

Here we give the derivation of thedg-noise term used in
the mean-field analysis~11!. In the continuum limit, noise
effects alone will result inp(x,y) taking the mean value o
the surrounding square with sidesdg, that is

Dnoisep~x,y!52p~x,y!

1
1

dg2Ex2dg/2

x1dg/2E
y2dg/2

y1dg/2
p~u,v !dudv.

~A1!

For smalldg, p(x,y) can be expanded according to Taylor
theorem as

p~x1dx,y1dy!5p~x,y!1dx
]p

]x
1dy

]p

]y
1

dx2

2!

]2p

]x2

1dxdy
]2p

]x]y
1

dy2

2!

]2p

]y2
1•••. ~A2!

On substituting this into Eq.~A1!, the terms indx, dy, and
dxdy integrate to zero, leaving the leading-order term

Dnoisep~x,y!5
dg2

24
¹2p~x,y!1O~dg3!, ~A3!

where¹2 is the two-dimensional Laplacian operator,

¹2[
]2

]x2
1

]2

]y2
. ~A4!

Equation~A3! is added to the expression forDp(x,y) when
dg50 ~4! to give the total change inp(x,y) at every time
step fordg.0. Setting this to zero then gives the new stea
state equation~11!.
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