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Speciation and extinction in a simple model of evolution
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We introduce a simple model of macro-coevolution that allows the branching and termination of species
lines and also incorporates external influences to the ecosystem. The strength of the external influences and the
likelihood of speciation and extinction are defined from the fitness landscapes by two paradgtars]
8s. Results from numerical simulations show that the total number of species fluctuates about a natural system
sizeN... We present a mean-field theory that predts< (K — 1) s/ 592, whereK — 1 is the system connec-
tivity and s is small. This result compares well with the numerical simulations. For l&sgeve demonstrate
why this expression changesio,« (K —1)8s?/ 5g2. We compare the model to the fossil record, and comment
on the role of ecological niches in models of evolutifB1063-651X97)15403-4

PACS numbdrs): 87.10+€, 05.40+j

[. INTRODUCTION number of niches in the system, each of which contains ex-
actly one species. This is in direct contradiction to the fossil
Attempts to model the evolution of the Earth’s ecosystenrecord[6], which clearly shows a wide variation in lifeform
have been hampered by its sheer size and complexity. Exagiversity, including periods of both apparent stasis and rapid
analysis of even small subsystems is often impractical, s@rowth. One previous attempt to tackle this problem allowed
tractable models of the large-scale dynamics can only b&ach species the possibility of speciati@plitting into two
constructed after considerable simplifications have beefubspecigsor extinction whenever it evolved to a new form
made. To this end, Bak and Snepdédn have introduced a [7]. Depending upon how this probability is defined, the
model that captures the essential ingredients of a coevolvingumber of species either tends to zero or increases without
system without trying to account for the complex internallimit as the system evolves.
dynamics of each species. Each species is represented by aln this paper, we present a modified Bak-Sneppen model
single number, which is related to the average time it takes t# Which speciation and extinction are defined purely from
evolve to a new form. This simplification allowed extensive the internal dynamics of each species. The system evolves to
numerical and analytical studies to be performed, which@ State in which the total number of species fluctuates around
nonetheless revealed similarities with the fossil record, most steady state value. We refer to this value asrthtiral
notably the existence of punctuated equilibria and a powersystem sizebecause there is nothing that directly controls its
law distribution of extinction sizes. value or even its existendéor instance, there is no reference
In the 0rigina| Bak-Sneppen model, extinction is modeledto niche$. The model is defined and justified in Sec. Il. In
by a species changing form in response to the change in forraec. lll, results obtained from numerical simulations are
of an interacting species. This is a rather narrow definitioncompared to the fossil record. A mean-field theory for the
so recently a variety of models have been introduced thamnodel has been derived that predicts how the natural system
incorporate more sophisticated mechanisms for extinctionSize depends upon the system parameters, where there are
One approac[]Z] has been to account for influences externalnoOw three such parameters. This analysis is explained in full
to the ecosystem, such as meteor impacts, volcano eruptior@ld compared to numerical results in Sec. IV. The main re-
etc., by assigning a fitness value to each species. In additic#Hlts are summarized and some possible extensions to the
to the usual dynamics, all species with a fitness less thafodel are suggested in Sec. V.
some global random noise value are also made extinct. A
number of models have allowed for the permanent termina-
tion of species lines, caused either by the population reduc-
ing to zero[3], viability dropping below a threshold value A key component of Darwinian evolution is that varia-
[4], or competition from similar species in neighboring re-tions in an organism’s fornithat is, itsphenotypgcan alter
gions[5]. Generally, these models exhibit features that agre¢he probability of that organism’s survival, which, when
with observed paleobiological findings. combined with a suitable hereditary mechanism, gives rise to
All these modeld1-5] have tightly controlled the total natural selection. Rather than try to reduce the evolution of a
number of species in the system, usually having a fixed sysspecies to its component individuals or genes, however,
tem size where every species made extinct is immediatelynodels based on the Bak-Sneppen approach take the whole
replaced by a new one. This has been justified by the conceppecies as the fundamental unit of selection. The relationship
of ecological nicheswhere it is assumed there are a constanbetween phenotype and survival probability is quantified by
a rugged fitness landscafd@], which is a function of the
species itself, the species directly connected to it in the food
*Electronic address: David.Head@brunel.ac.uk chain, and also of environmental factors. A schematic ex-
"Electronic address: G.J.Rodgers@brunel.ac.uk ample is given in Fig. 1, where for simplicity we have com-

II. DEFINITION OF THE MODEL
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A become dynamically involved and so this mapping is no
stable phenotype

longer valid.

Before coming to these new features, it should be noted
that the fitness landscape is also dependent on events unre-
lated to other species, including geographical, climatic, and
astronomical changes. The influence of these factors on each
species’ fithess landscape, and hence their barriers, is likely
to be very complex. We assume that their total effect is ran-
dom and incorporate this into the model as noise of
0O(dg), where 8g is a new parameter. Specifically, we say
that at every time step, each barrier in the system is trans-
formed according to

Species Success

Y

Phenotype
bki*)bki+5gki! i=1,...N, k=1 or 2 (1)

FIG. 1. A schematic diagram of a fitness landscape. Local
maxima correspond to stable phenotypes. The two smallest barrie{Shere  the 894i(t)

) . , are uniformly distributed on
against mutation are given ly; andb,.

[—69/2,69/2] and uncorrelated in time. We shall call this
69 noise.

pressed all possible phenotypic variations onto the single We now consider extinction. Although a species that un-
horizontal axis. The vertical axis corresponds to some meadergoes a burst of mutations may appear in the fossil record
sure of the species survival, which could be any one of @s a separate extinction and speciation, we prefer to think of
number of definitions for biological fitnes§9]. Local  this as a psuedoextinction and reserve the term extinction for
maxima are the attractors of these landscapes, in much tiBe permanent termination of a species line. There are many
same way that local minima are the attractors of potentiaPOSsible mechanisms for extinction given in the literature
energy landscapes. A species passes between adjacéh:11. Within the context of this model, we define extinc-
maxima with a probability exponentially small in, and hencelion to be the inability for a species to adapt to new condi-
on a time scale exponentially large in, the barrier height.t'ons or competitors. In terms of the barriers, a species be-

Previous models have considered only the smallest barriipmes extinct if, when it is chosen for mutation, it has both

against mutation, citing the exponential time differences awliitrT gn?n\(/jgrziTalr. JEZ rjﬁs:glgag?:sioraH':zlastilcfntﬂgtsizggrazsso
justification for rejecting the larger ones. Since we eventually, nly Verytarg 9 :
nflexible that it is no longer able to adapt and dies out.

. X ! . . I
wish to include branching into two different species, we re'Fixing the threshold value to be 1 may seem to be somewhat
ject all but the two smallest barriers; andb,.

Ny f. oll h . rbitrary, but the fithess scale is entirely arbitrary anyway
Our model is defined as follows. The system consists 0L fixing the value like this removes the need for extra

N species, each of which is completely defined by two reaharameters. The model has proved to be robust under a va-
numbers{by; by}, i=1,... N, corresponding in no par- riety of extinction thresholds, including ones defined by
ticular order to the two smallest barriers against mutationprobability distributions. The value of 1 was chosen so that
Initially each barrier is uniformly distributed on the interval there would be no extinction whefig=0 and the original
[0,1]. At every time step, the lowest of theN2barriers is  model might be recovered. Since extinction and speciation
found. This is theb,; that obeysh,;<bp,, for all m#k and are to be treated independently, the vacancy left by an extinct
n+#i, wherek=1 or 2. The speciesis thenmutated— that  species is not immediately refilled and the system size is
is, bothb,; andb,; are assigned new values from the uni- reduced by IN—N—1.
form distribution, corresponding to a new fitness landscape. Speciation occurs when two subpopulations reach a state
Note that both barriers are changed irrespective of the valuef reproductive isolation and hence should be considered as
of k. To incorporate coevolution, those species linkedito ~ separate subspecies. This could occur, for instance, by spatial
a manner yet to be defined are similarly mutated. isolation, such as the introduction of a geographical barrier,
As the model has been defined so far, the barriers arér by some form of genetic variation resulting in a hybrid
static between mutations and so the larger barrier for eachone with low fitness. In fact, the possible causes of specia-
species is not involved in the dynamics. Therefore if we werdion [12] are too numerous to account for independently.
to remove the larger of the two barriers upon every mutationWithin the framework of the fitness landscapes, however,
we would have the same system with the same dynamics bifiere is a way of defining speciation that neatly encapsulates
now with just one barrier per species. This process of choognany of the possible biological mechanisms. Bgtdenote
ing the smallest of two uniformly distributed barriers can bethe probability of speciesto cross over the barridy,;, and
mimicked by drawing a single barrier from the different dis- P, the probability to cross oveb,;. Then P, /P, decays
tribution P(x)=2(1—x), xe[0,1]. Thus we can map the exponentially in b;;—b,;) and is, respectively, 0 or for
two-barrier model onto the original Bak-Sneppen model withb,; significantly larger or smaller thab,;. However, for
barriers drawn from a modified probability distribution. This bij=~b,; there is a finite probability of subpopulations cross-
change is unimportant since the model is robust — that is, iténg over different barriers. For simplicity, we say that species
essential behavior is insensitive to arbitrary details such as will speciate if, when chosen for mutation, it has
the particular choice of probability distribution. With the in- |by; —b;| smaller than some new paramets:. For further
clusion of speciation and extinction, however, both barriergealism, we could incorporate the possibility of one species
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splitting into three or more subspecies simultaneously, by
including further barrierds;, by, and so on. This would
occur so rarely as to barely contribute to the dynamics, how-
ever.

To complete the description of this model, we must define
the system connectivity. Difficulties are immediately appar- _
ent in any lattice based approach. For instance, branching® 700
would not be possible for any species that has all its adjacentﬁ :
lattice sites occupied. Also, the extinction of a single species '@ 60 |
in a one-dimensional food chain would split the chain into i
two. An alternative approach, which has already been stud-
ied with simpler definitions for extinction and speciatiat,
is to arrange all species past and present on a tree, with theg
ends of the branches corresponding to those currently active 2
In this paper, however, we have chosen to simplify the dy-
namics by assigning to every speci€s-1 neighbors, se- oo |

lected at random from the remaining—1 in the system T Y TR G B R
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ystem, N(t).
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er of specie:
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[13]. These neighbors are reselected upon every mutation, x 10
hence the disorder is annealed. Since the system has no spa- . _

tial definition it cannot be regarded as self-organized critical Number of simulation steps, {.

[14].

. . - FIG. 2. Plot of the system sizdl(t) againstt, with K=4,

In.summary, th.ls modelis defllned as fOHOWS'.The syStem(Sg:O.OZ, andész0.00l,ystarting fro(rr? agsystem witNy=200
consists o species, each of which has two barridrg,and species,
by, i=1,... N. All barriers are initially drawn from the
uniform probability distribution on the intervdl0,1]. The
algorithm for every time step then proceeds as follois.
The smallest barrier in the systerh,;, is found, where
k=1 or 2. Species is then mutated, which means that both When §g=0 there is no extinction and the system size
bs; andb,; are given new random values from the uniform N(t) increases without limit. This is also the case when
probability distribution(ii) K— 1 other species are chosen at K=1. When §s=0 speciation becomes impossible aNd
random and similarly mutatediii) If a species selected for tends to zero. Withsg>0, §s>0, andK>1, N approaches
mutation ha$,;>1 andb,;>1, it is removed from the sys- a constant valueN,,, which is independent of the initial
tem.N—N-—1. (iv) If a species selected for mutation has value N,. It then fluctuates around this value but never
|by;— by < 8s but is not made extinct, it branches into two settles down within the time frame considered, typically up
new species with random barrietd— N+ 1. (v) Every bar-  to around 16x N, time steps. An example is given in Fig. 2.
rier by; is transformed td,;+ 89,;, where thedg,; are uni-  For values ofNg far from N,,, N(t) initially increases or
formly distributed on[ — 5g/2,6g/2] and are reselected at decreases linearly. Note that we have implicitly assumed that
every time step. The order of stefis) and(iv) can be re- &g and ds are small, since large values are physically unre-
versed if eitherdg or §s is small. This robustness is lost alistic.
when both parameters are large, when reversing the order That such a natural system size should exist at all is by no
will result in almost no extinction. means obvious, since speciation and extinction are both de-

The original Bak-Sneppen model is recovered in the limitfined independently o. It exists because thég noise has
89— 0 and §s—0, with one crucial difference. Ifi1,2] the a different effect on speciation than it does on extinction.
time step is set aft~expi/by), since this is the expected The random noise is just as likely to push two barriers apart
time it takes to pass over the minimum barrig;, where as to bring them together, so the rate of speciation remains
b, fixes the scale. Our model, however, also includgs roughly unchanged. However, the noise acts asymmetrically
noise corresponding to influences unrelated to the barrieran barriers near the threshold for extinction, tending to push
and consequently on an independent time scale. Rather thapecies over this threshold into the small tail corresponding
include two separate time scales for the coevolutionary antb those species that will be made extinct when next mutated.
external processes, we have chosen to ignore such considdhe important point to remember is that thg noise acts on
ations and simply seft to be constant. The physical rami- all N species at every time step, hence the rate of extinction
fications of this choice will be discussed when the model isncreases witiN but the rate of speciation will remain con-
compared to the fossil data in Sec. Ill. stant. A steady state will be found when these two rates

With such specific definitions of general processes, it idalance. This qualitative reasoning is confirmed by the
obviously important to check for robustness. We have triednean-field analysis in Sec. IV.
various definitions for speciation and extinction based on For marine organisms, a graph of the number of families
uniform, exponential, and normal distributions, and similarlyof species against timé&] initially increases, then levels out
for the distribution of theSg noise. In all these cases, the throughout much of the Palaeozoic era. After a sudden drop
essential behavior of the system remained unchanged, tlmused by the mass extinction at the end of the Permian
only differences being purely quantitative. period, the graph increases linearly beyond the previous pla-

. NUMERICAL RESULTS AND COMPARISON
TO THE FOSSIL RECORD
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teau and is still increasing to the present day. We present the 1(1

following possible explanation for this behavior based on our Q(x,y)= f f p(x’,y")dx'dy’, (©)]
model. The marine record could be viewed as being split into m-am

two parts separated by the end-Permian mass extinctiofyherem= min(x,y). The justification of Eq(2) is that the
where the more recent part has a much higher value fogpacies with the minimum barrier could be any oneNoin
N... This would certainly account for the shape of the fossilie system, and the othdr— 1 species must have both bar-
record, but we still need to justify the different values for i, larger than the minimum. Note tha(x,y)=p(y,x)
N... This comes from closer examination of the mass extincznq the time dependence is implicit. At each time step,

tion itself [15], which caused the predominantly sedentaryp(x y) will change by an amounip(x,y) defined by
marine life to quickly evolve to much more mobile forms. ’ '

Increased mobility would mean a lessened susceptibility to 1
geographic fluctuations, hena®g would decrease and so Ap(XrY):_Npmin(Xay)
N., would indeed increasgsee Sec. V.
The data for continental organisms does not agree as well. K-1 1
In this case, the plot of diversity shows an increase faster ~ N1 | POSY) T G Pmin(X.y) [ 5. (4)

than linear and no apparent plateaus. The model we have

presented clearly fails to account for this behavior and wevhere the first term on the right-hand side accounts for the

can only suppose that more realistic enhancements may inmutation of the species with the lowest barrier, the second

prove its validity. One such modification would be to allow for the the mutation of th& —1 random nearest neighbors,

the tendency to branch or become extinct to itself be a heand the third term handles thé new pairs of barriers.

reditary characteristic, that is to replace the global param- The system evolves to a state whexp=0. Using Egs.

etersds and 8g with species-dependeidy; and ds;. Simu-  (2) and(4) we derive the steady state equation

lations allowing such quantities to vary randomly by a small

amount upon mutation do indeed appear to remove the K K-1 N-K .,

steady state and haw increase faster than linearly. This is N N-1P " N—=1 pQ™ "=0. ©)

to be expected, since branching now favors species with a

larger 8s;. It would be interesting to see what a detailedAs in the original mode[1], we must consider two separate

study of such a model might reveal. regimes. FoQ<1—O(1/N), the third term on the left hand
The rate of mutation i& 6t, which is constant. This is not side of Eq.(5) vanishes in the larght limit and we get

true for most other Bak-Sneppen models, whétrés a func-

tion of the minimum barrier as explained in Sec. Il. It was

this variation that allowed for the power-law distribution of

extinction sizes, which was one of the central results of the ]

original study. We cannot hope to reproduce such behaviofhe other regime corresponds @(x,y)=1+O(1/N) and

without first separating the time scales for mutation @agd hence, from the definition d@(x,y) Eg. (3), we can see that

noise, something that would require the introduction of at?(X,y)=0O(1/N). This means the second term in &) will

least one extra parameter. The extinction of species lines i4anish, giving

our model follows a Poisson distribution, as expected for a

K
p(X,Y):m- (6)

: K
random selection process. meflzﬁ, @)
IV. MEAN-FIELD ANALYSIS and hence from Eq2)
In this section we extend the mean-field analysis of Pmin= K. (8)

Flyvbjerg et al. [16] to our model. Although a full solution ]
was not obtained, unsurprising in light of the dynamical The boundary between these two regimes can be found by
complexity, we have derived an expression for the depent@membering that botp and py,, are probability distribu-
dence ofN., on the parameter€, &s, and g, which agrees  tions and so must normalize to one. The final solution is
with the numerical results. Initially, however, we ignore ex- therefore
tinction and speciation and just consider how the analysis

can be expanded to cope with pairs of barriers. —— forxandy>1— E
We definep(x,y)dxdy to be the probability that a ran- p(x,y)={ K-1 K 9

domly selected speciesi has x<b;;<x+dx and O(1/N) otherwise,

y<b,<y+dy. This can be related tp,(X,y), the distri-

bution for whenx ory is the lowest barrier in the system, by K—1
O(1/N) forxandy>1—\/——

Pmin(X,Y) = K
Pmin(%,Y)=Np(x,y)QN~*(x,y), v K otherwise.

(10)

whereQ(x,y) is the probability that a species has both bar-The regime for large barriers corresponds to species that can
riers greater than the smaller xfandy, only get mutated by selection as a random neighbor, whereas
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y The 6 functions in the first term are needed sincandy can
now take values outsidd,1]. The last term on the left-hand
p side of Eq.(11) accounts for the noise, whefé? is the
Laplacian operator. A full derivation of this term is given in
. the Appendix. Note that it is only valid for whefg is small.
--------- The system behavior for larggg is considered at the end of
this section.
Each of theK—1 random neighbors selected every time
step will be made extinct if they have>1 andy>1. Thus
the rate of extinctiorkg is given by

ke=(K—1) ff f:mx,y)dxdy. 13

Strictly speaking, the distribution in this equation should be
p—(1/N)pmin, but this distinction can be ignored for large
N. Since both barriers are larg®N~1~0 and Eq.(11) can
now be simplified by the transformation

FIG. 3. Schematic of solution qf(x,y) for §g>0. The shaded

region is the density op(x,y), lighter gradations corresponding to X—x"=a(1l-x), (14)
lower densitiespg refers to the regiox>1 andy>1, where spe-

cies are liable to extinction. y—y' =a(l-y), (15
the asymptotic tail for small barriers describes the finite , K-1 (16)
number of species that can be selected as having the mini- P=p =" P

mum barrier. These two regimes are separated by the thresh-
old value of 1-{(K—1)/K, which for largeK is approxi- , 48K-1)
mately 1/XK. This comes as no surprise, since splitting up a 259—2N’ (17)
each pair of barriers would give the original single-barrier
model with ZK —1 random nearest neighbors, which also hago give
a threshold value of 1R. Breaking up pairs in this way
involves replacing just one fixed connection with a random 2V'2p’(x",y")=p'(X".y" )= 6(x")6(y’). (18
one, a small difference whel is large.

We now turn to considepg>0 and 6s>0. To replace
the constanN with a dynamical variablé(t) will quickly

For eitherx’ or y’ negative, corresponding to>1 or
y>1, the second term on the right-hand side of ELB)

make analysis impractical, so instead weNxN.. and as- vanishes and the equation can be solved by separation of

sume that speciation balances extinction. Our hope is that thgfables.  Coupled with ~ the boundary condition
fluctuations ofN aroundN., do not significantly contribute to P (X',y')—0 for x’——ce ory’— —cc, the solution is

the solution and can to a good approximation be ignored.
Note that extinction has now become dynamically redundant,

since making a species extinct and immediately replacing iﬁlherec is an arbitrary constant. However, it is clear from the
IS no dlfferen_t f_rom a nqrmal mutation. The effects of spe- umerical results that although the assumption of separable
ciation can similarly be ignored, and we need only accoun ariables is good for this regime, it is not valid when

for the 6g noise. , f . . .
: . x>0 andy’>0. Without matching solutions for these two
h With fg'|>0,tp(xd,.y) vx{llltbetc;]ome b'lurredlat th: e;jgiesAand different regimes, it is impossible to fix the value @fThat
ave a tail extending inio the regions>1 andy=>1. ¢ is independent oK and « follows from the absence of

Zghemte;;uc&dlag_ram. Of. tge ne\(/jv S?luft'?r? IS g;v?_n in Fig. 3'these parameters in E@L8). Therefore transforming back
Ince theog noise 1S Independent of the mutation processyy, e original variables gives the explicit parameter depen-

we can calculate its contribution thp(x,y) separately and dence
simply add it to the expression farp(x,y) whensg=0 (4). '
The new steady-state equation is

pl(xr,yr)=Ce(l/2)(x'+y’)’ (19)

P(XY)=Ci—q e (R+y=2)  forx>1 andy>1.

K K-1 N-K - (20
NG(X)G(l—XW(y)@(l—W—mp—meN !

Substituting this into Eq(13) gives
89° _,
V<p=0, (11

oA K
24 kgor g°Ni— . (21)

+

=

if x=0, (12) WhenN=N,, this will be balanced by the rate of specia-

where 6(x)= tion, ks. The lack of a solution of Eq(1ll) for x<1 and

0 otherwise.
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TABLE I. Observed values of the natural system site for  tion of the noise term in Eq.11) is no longer valid and the
varying parameter values, averaged ovef e steps. The num- rates of speciation and extinction must be found by alterna-
bers in brackets refer to the uncertainty in the last @gitNote that  tjve methods.
the line forK =4, §g=0.02, andds=0.001 appears three times, to In the noise-dominated reginmx,y) is roughly symmet-

allow for easier comparison. ric about thex andy axes, since the noise is isotropic. Thus
at most 1 in 4 species has both barriers greater than 1, and

2
K s s ObservedN..  N..6g7/[55(K—1)] the rate of extinction will approach an upper bound value of
2 0.02 0.001 32(%) 1282 K—1
4 002 0001 956) 127(1) ke~ ——. (25)
8 0.02 0.001 2238.0) 128(1) 4
4 0.02 0.001 9 1271
4 004 0001 2458 1288 The width ofp(x,y) can be found by the following argument
4 0l08 0'001 60) 1302) based on a random walk approach. The average time be-
4 0'02 0'001 956) 12700) tween mutations as a random nearest neighbor is
4 0'02 0'002 17700) 1182) 7=(N—1)/(K—1). Each barrier is a one-dimensional ran-
. 002 0.004 32560 1092) dom walker that starts from near the origin and moves until

it is chosen for mutation, when it is sent back to near
the origin. The average step size #&y/4, and so the

. - - . . - l_ 1/2
y<1 means we have been unable to derive an explicit exdVerage distance it covers in this time is3507

pression for speciation whefg>0. Instead, we use the ”4115_9 VN/(K—1) for largeN. This gives the width of the
59=0 solution as a first approximatioks will be propor- barrier d|str|_but|c_)n in bc_)th_ t_hex an_dy dlrect|on§. The num-
tional to the density of species witlx—y|<ds. Further- €' Of species in the infinite strifx—y|<ds is inversely
more, since the species with the minimum barrier can als@roportional to the distribution width, and so the rate of spe-
branch, we must calculate the contributions frgmand  Ciation is now given by
Pmin Separately and weight them accordingly, i.e.,

Kés [K-1
ks:f f (85— [X=yD{Pmin(X,¥) + (K—=1)p(x,y)}dxdy.
(220  As N increases, the rate of extinction will remain roughly
constant but now the rate of speciation will decrease until a
Substituting the explicit expressions ferandp,, from Egqs.  balance is found &tl=N,,. From Eqgs(25) and(26), we find
(9) and (10) gives that

ke~2Ké8s  for small§s, (23 s

2
Nw“(K—l)(é—) : (27)
which is explicitly independent oN. With §g>0, p(Xx,y) g

broadens and so the real rate of speciation will be slightlyrhis expression replaces E@4) when ss is large. It differs

lower. _ _ only in that it is now proportional tass? rather than just
Settingke=Kks gives an expression for the parameter de-ss " Figure 4 demonstrates the crossover between the two
pendence oN.., different forms ofN,,, where to keep the system sizes man-
s ageable we have fixedg= §s= 4. It is clear from this plot
o« that N, 6~ for small 8, but N_,=8° for large 8, as Egs.
Nos 5(K—1). (29 > et
o9 (24) and (27) predict. We have also checked the validity of

) Eq. (27) for a range oK, g and s+ &9g.
If Eq. (24) were exact the quantitN,.8g%/[8s(K—1)]

would be invariant. This should be compared to the numeri-

cal results given in Table I. The agreement with the mean- V- DISCUSSION

field theory is very good for varyingg andK, but there is a In this paper, we have shown how the Bak-Sneppen
noticeable divergence ads increases, corresponding to the model can be extended to include the branching and termi-
approximate derivation dfg [Eq. (23)]. nation of species lines in a model that exhibits a natural

Although large values obg and s are physically unre- system size. Thus there is no longer any need to assume a
alistic, to complete our study of this model we now describeconstant number of ecological niches to obtain sensible re-
its behavior for large parameter values. For ladgge and  sults, i.e., systems whose species number does not diverge to
small ds, N, is so low that statistical fluctuations make ev- infinity or dwindle to zero. Indeed, rather than requiring
ery species in the system extinct. For smédl and large niches, this model can be used to define what we mean by a
8s, the system size becomes very large and the average tinmiche and their number. Since we have a steady state, every
between mutations increases accordingly. Hence the noisxtinction must be associated with exactly one speciation,
becomes the dominant driving force and the barrier distribualthough they can be in any order and have any time sepa-
tion becomes very broad. Similarly, when bafg and s  ration. In this sense, we can say that every species does in-
are large the random noise dominates the system, so largieed occupy a niche, but the number of niches now comes
8s corresponds with a noise-dominated regime. The derivafrom within the system itself. This is an interesting corollary,
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n Comparison to the fossil record has demonstrated some
85 % : agreement with the model, but also some qualitative differ-
L ences. Although the model is already fairly complex, there
Ly are still many possible modifications that may improve its

B\ applicability. We have already mentioned introducing
I . species-dependens; and 8g; . Another enhancement would
I % be to have some form of locally defined connectivity, to
—_ 75 replace the random neighbor approach used here. Finally,
S having a barrier-dependent time scale separate from the
= \, random noise would allow for comparison with the distribu-
- L tion of extinction sizes from the fossil record. Many other
r variations could also be considered, but it seems likely that
e the study of such models would be confined to numerical
6.5 L \\ work.
. APPENDIX
6 - ° o, Here we give the derivation of thég-noise term used in
L. the mean-field analysiéll). In the continuum limit, noise
oo 0 ! 2 3 * effects alone will result ip(x,y) taking the mean value of
In( 8 ) the surrounding square with sidég, that is
FIG. 4. Plot of the natural system sip&, againsté= 6g= §s. AnoiseP(X,y) =~ p(X,y)
K=2 and the system size was averaged ovértire steps. The 1 [x+8gl2 [y+dg/2
straight lines are to guide the eye, where the solid line is horizontal + —2f f p(u,v)dudv.
and the dashed line has a slope-¢of. 69° Jx-sgi2 Jy- sqi2
(A1)
wh|_ch_should not be _aII th_at surprising, since any formalFor smallég, p(x,y) can be expanded according to Taylor's
definition of an ecological niche would primarily involve all theorem as
the species and hence depend on the whole ecosystem.
Despite the extra features, this model is qualitatively very ap X% %

Ip
similar to the original whernsg and §s are small. This is p(x+5x,y+8y)=p(x,y)+5x5+5yw+ 21 9x2
confirmed by the mean-field analysis, which shows that the 5 S
barrier distribution has only changed B 8g2). This analy- + oxdy °p . oy” o°p + (A2)
sis has also produced an expression for the natural system axay 2! gy?

e ear on subtuting this to EGAD, th tes i, oy,
9. . . ) oy integrate to zero, leaving the leading-order term
dominated regime, which occurs whén is large and has a
2

modified expression for the natural system size. It is interest- ) 3
ing that in both cases the system size is proportional to its AnoiseP(X,Y) =57 VP(X,y) +O(89°%),
connectivityK—1. This occurs because, whés is small,

the rate of extinction depends on the noise but the rate ohereV? is the two-dimensional Laplacian operator,

(A3)

speciation does not. Conversely, whésiis large, it is the P2 P
rate of extinction that is constant and now the rate of specia- V2= a_xz+ Wz (A4)

tion decreases due to the noise. The amount of noise that

each barrier is subjected to depends upon the average numBquation(A3) is added to the expression fAp(x,y) when
ber of time steps since its last mutation, which in this randomsg=0 (4) to give the total change ip(x,y) at every time
nearest neighbor model isN/(K—1). Thus, the two rates step for6g>0. Setting this to zero then gives the new steady

balance whemN«K —1.

state equatiorll).

[1] P. Bak and K. Sneppen, Phys. Rev. L&tt, 4083(1993.
[2] B.W. Roberts and M.E.J. Newman, J. Theor. Bib80, 39

(1996.

[3] G.Abramson, Phys. Rev. &5, 785(1997).

[4] R.V. Soleand S.C. Manrubia, Phys. Rev.32, R42(1996.

[5] D. Aldous, J. Appl. Probal2, 279(1995.

[6] M.J. Benton, Scienc68, 52 (1995.

[7] M. Kramer, N. Vandewalle, and M. Ausloos, J. Phys. |

(France 6, 599(1996.

[8] S.A. Kauffman, The Origins of Order(Oxford University
Press, Oxford, 1993
[9] R. Dawkins, The Extended Phenotyp@xford University
Press, Oxford, 1982
[10] M. Ridley, Evolution (Blackwell Scientific Publications, Bos-
ton, 1993.
[11] D.M. Raup, Extinction: Bad Genes or Bad Luckorton,
New York, 199).
[12] J. Maynard-SmithThe Theory of EvolutiofiCambridge Uni-



55 SPECIATION AND EXTINCTION IN A SIMPLE MODEL ... 3319

versity Press, Cambridge, 1993 (1995.
[13] J. de Boer, B. Derrida, H. Flyvberg, A.D. Jackson, and T.[15] D.H. Erwin, Sci. Am.275 (1), 72 (1996.
Wettig, Phys. Rev. Lettr3, 906 (1994. [16] H. Flyvbjerg, K. Sneppen, and P. Bak, Phys. Rev. L@t

[14] J. de Boer, A.D. Jackson, and T. Wettig, Phys. Re§1F1059 4087 (1993.



